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Introduction

Proteins are dietary components indispensable for main-
tenance and survival. Proteins contribute to nutritional
requirements through the provision of nitrogen and amino
acids (AAs), which are converted according to the meta-
bolic needs into body proteins and various biochemical
intermediates involved in different cellular and body
activities, metabolism and functions. The amount (and
quality) of protein intake and the dietary protein role in
healthy subjects and in different clinical nutritional condi-
tions and physio-pathological perspectives are widely
debated.

Basics in clinical nutrition

Systemic AA homeostasis is tightly regulated, resulting in
constant plasma and cellular levels [1]. Body protein and
AA metabolism proceeds by a continuous turnover of body
protein and free AA pools through protein synthesis and
degradation, AA degradation and losses through metabolic
and catabolic pathways, and AA supply through de novo
synthesis and dietary intake [2]. AAs are the substrates of
protein synthesis and are also the main nitrogen-containing
precursors for nitrogen-containing molecules, including de
novo synthesis of dispensable AAs, hormones, neuro-
transmitters and specialised metabolites (i.e., glutamate,
serotonin, polyamines, creatine, phosphatidylserine and
nitric oxide), and purine and pyrimidine nucleotides for the
synthesis of nucleic acids (i.e., DNA/RNA) and energy
transfer intermediates (i.e., ATP, ADP and IMP). In addi-
tion, after deamination AAs provide carbon skeletons,

which are substrates for gluconeogenesis, for production of
intermediates of the TCA cycle, for production of C1 car-
bon intermediates and as energy substrate with an energy
value equivalent to glucose.

The 20 proteinogenic AAs are the precursors of protein
synthesis. Protein synthesis and degradation are major fac-
tors in AA homeostasis and are tightly regulated by AA
availability and energy to sustain the metabolic processes
[1–4]. Whole-body proteins account for about 10 kg in male
adult with a turnover of about 250–300 g per day and
muscle is the largest protein compartment. In the post-
absorptive state subjects are catabolic and in negative net
protein balance with protein breakdown exceeding protein
synthesis while feeding stimulates protein synthesis and net
deposition in muscle and other tissues [1, 5, 6]. Insulin
promotes AA uptake, particularly in muscle, and muscle
protein synthesis is promoted by AAs, particularly leucine,
insulin and insulin-like growth factor-1 [3, 6–8]. Synthesis
of albumin and other protein in the liver is also regulated by
AA availability. In the transition from the fed to the post-
absorptive state, protein degradation increases to a level
related to habitual protein intake. Autophagy plays a sig-
nificant role in the maintenance of plasma AA concentra-
tions under starvation conditions. AAs regulate systemic
autophagy, particularly in the liver and less in muscle where
insulin is the main regulator [9]. In healthy subject with
very low protein intake for several days, nitrogen losses
decrease from about 1 to 0.4 g/kg/day with a down-
regulation of liver AA oxidation.

AA supply is supported by dietary intake and de novo
synthesis of dispensable AA [1, 2, 10]. In the intestinal
lumen, dietary protein and luminaly secreted endogenous
protein are digested by gastric, pancreatic and intestinal
epithelial cell proteases and peptidases, and released to the
portal and peripheral circulation as AAs used by tissue with
many transport activities that control their entry and exit in
cells [10, 11]. Postprandial AA concentration is slightly
increase but this is only significantly with high protein
intake. The liver plays an important role in buffering per-
ipheral blood AA level, as this organ metabolises about
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60% of portal blood AAs, but with important differences
between AAs, with alanine and glutamine being extensively
metabolised and branched-chain AAs (BCAAs) and gluta-
mate poorly removed by the liver. In addition, de novo
synthesis of dispensable AAs proceeds in a variety of cell
types through an active process that involves the transfer of
nitrogen between AAs. There is also an active AA reab-
sorption in the kidney through AA and peptide transport
systems to recycle and spare AAs.

Recommendations for protein reference intakes in heal-
thy adults at maintenance are based on nitrogen balance,
which reflect the minimum amount of nitrogen intake
required to balance nitrogen losses under conditions of
energy balance. This leads to a mean requirement of 0.66 g/
kg bodyweight (BW)/day of good-quality protein, and a
recommended reference intake for young and older adults of
0.83 g protein/kg BW/day [2]. A factorial approach con-
sidering a maintenance component and an additional com-
ponent of net protein deposition for growth, gestation or
lactation is used for infant and children, and for pregnant
and lactating women, respectively [2]. The 20 proteinogenic
AAs are the precursors of protein synthesis and if non-
dietary essential (dispensable) AAs can be synthesised by
many cells from nitrogen and metabolic intermediates,
dietary essential (or indispensable) AAs that must be
acquired from dietary origin are limiting factor for protein
synthesis and their availability controls protein turnover and
homeostasis. Indispensable AA content is the main criteria
for assessing protein quality and the currently accepted
method is a chemical scoring that relates the indispensable
AA content corrected by their bioavailability of individual
foodstuffs or diets to reference indispensable AA profiles
[2, 12–15].

Present research activities

Important questions are progressively understood in the
relation between protein and AA metabolism and energy
metabolism. Under nutrient sufficiency in healthy adults,
there is a constant turnover of proteins with most AAs being
recycled over time, and net losses are mainly related to AA
oxidation in the mitochondria. Unavoidable losses of
20–25 g of protein/day are replaced by de novo synthesis
and dietary intake. AAs can be oxidised in many cells in the
mitochondria and the AA-derived carbon skeleton can be
used by the liver to produce glucose or as substrates in
tissues fuelling the Kreb’s cycle with an energy content
equivalent to that of carbohydrates (16–17 kJ/g) [16, 17].
Short-term fasting does not significantly decrease plasma
AA except for alanine used for gluconeogenesis. Alanine is
the main final product of protein degradation in muscle
where upon stress and nutrient limitation glucocorticoids

both inhibit protein synthesis and increase the release of
alanine. During prolonged fasting glucagon increases glu-
coneogenesis, and blood plasma AA concentration decrea-
ses, more particularly for alanine, citrulline, proline,
ornithine, tyrosine, glycine and threonine.

Muscle protein synthesis in older adults and in chronic
disease is an important topic of research in the last decades.
In older adults the anabolic resistance of muscle protein
synthesis to nutritional stimulation by protein and AA
intake, particularly at low doses, leads to muscle wasting
and lower muscle strength (sarcopenia) [5, 18, 19]. In
addition, patients with chronic disease often show impaired
protein and AA metabolism with increased morbidity and
mortality [20–23]. Muscle proteins and circulating liver-
synthesised proteins are the main body stores for the supply
of free AAs either recycled for protein synthesis or meta-
bolised in different metabolic and catabolic pathways [21,
24]. For both older subjects and patients with chronic dis-
eases the balance between anabolic and catabolic stimula-
tion can be altered with an increased catabolic state in
relation with a modified pattern of anabolic (e.g., insulin,
IGFs and growth hormone) and catabolic (tumour nerosis
factor-alpha, cortisol, catecholamines, glucagons and cyto-
kines) circulating mediators [22, 23]. This catabolic state
also induces insulin resistance that impairs protein and AA
metabolism [25].

Research is also conducted for a better understanding of
the regulatory mechanisms that ensure a homeostatic intra-
and extracellular AA composition. AAs are important
potential signals to modulate protein turnover and AA
metabolism [26]. The serine/threonine kinase mechanistic
target of rapamycin (mTOR), and more precisely the
mTORC1 complex, is identified as the main AA sensor for
maintaining protein and AA homeostasis [27–30]. This
mTORC1 complex regulates protein translation through its
downstream effector p70S6 kinase and direct target 4E-
binding protein 1, and autophagy through interaction with
the UNC51-like kinase 1 (ulk1)/autophagy 13 (atg13)/focal
adhesion kinase-interacting protein 200 kDa (FIP200)
complex [31–34]. An anabolic stimulus such as BCAAs or
leucine alone shifts protein net balance from catabolism to
anabolism by activation of mTORC1 in the presence of
insulin, promoting protein biosynthesis and reducing
autophagy [3, 35, 36]. Under conditions of AA depletion,
mTORC1 is inactivated and this reduces protein synthesis
and increases protein breakdown and autophagy.

In addition, while mTORC1 senses AA sufficiency, other
regulatory pathways are involved in the sensing of AA
deficiency. Many pathways are upregulated by transcription
factor ATF4, which is induced upon AA limitation. The
general control nonderepressible 2 (GCN2)/ATF4 system in
mammalian cells senses AA insufficiency and imbalance
and subsequently increases the cellular AA pool by
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reducing translation and AA oxidation and enhancing AA
uptake and biosynthesis [37–39]. In addition, AAs and
insulin exert a coordinated action on translation involving
mTOR, AMPK and GCN2 transduction pathways [40], and
the inhibition of AMPK and the activation of mTOR
transduction pathways are required for the downregulation
of protein ubiquitination in response to high AA and insulin
concentrations [41]. In contrast, FGF21, initially identified
as sensitive to AA, mainly appears as glucose-sensitive
[42].

Need of future research

The mTORC1 complex appears as a main regulator of cell
growth in eukaryotic cells. The active mTORC1 promotes
cellular anabolic processes, including protein, pyrimidine
and lipid biosynthesis, relevant to cell growth and pro-
liferation, and inhibits catabolic processes such as autop-
hagy and has been associated to different physio-
pathological processes related to important health pro-
blems, including diabetes, cancer or neurodegenerative
disorders [5, 43, 44]. Different still incompletely understood
questions are related to the mechanisms by which BCAA
but also other AAs such as arginine, glutamine or lysine are
sensed and lead to the activation of mTORC1 [45–47], to
the role of cytoplasmic structures other than the lysosome
[48–50] and to the downstream pathways controlled by
mTORC1 in the different cells, tissues and organs [51]. The
lysosome is identified as an important structure in sensing
AA availability by a mechanism involving the vacuolar
ATPase (v-ATPase) and signalling pathways involved in
cell metabolism and growth [5, 43, 44, 52–54]. After
ingestion of protein, BCAAs or isolated leucine, leucine
reaches the cell, moves into the lysosome, initiates the
colocalization of the lysosome with mTORC1, and the
lysosomal membrane protein v-ATPase transduces the sig-
nal to the Rag GTPases that induces the binding of the
Ragulator proteins to mTORC1 [5, 48, 55]. With low AA
concentration the GTPase-activating protein activity
towards Rags (GATOR) 1 protein acts as a negative reg-
ulator of AA sensing while with high AA availability
GATOR2 inhibits GATOR1, and the Ras homologue
enriched in brain (Rheb) protein binds to the catalytic
domain of mTORC1 and initiates mTOR signalling and
phosphorylation of downstream effectors [56–58].

The amount and AA pattern of proteins being turned
over within the body and the needs for net deposition
characterise the pattern that must be made available. The
amount and pattern varies with age, composition of tissue
deposition and recovery of functional competence, and
determine the quantitative and qualitative requirement to

achieve protein and nitrogen balance [59]. Recommen-
dations for higher protein intake of 1–1.6 g/kg/day are
discussed considering biomarkers other than nitrogen
balance and related to muscle mass, muscle protein
synthesis and muscle strength and function or to over-
weight, obesity, diabetes and cardiometabolic risk through
modulations in fat and glucose metabolism, energy
metabolism and energy intake [36, 60–71]. In addition to
total protein, the amount of protein consumed at each
meal to achieve optimal (muscle) protein synthetic rates
and metabolic responses is also discussed in a range of
20–35 g/meal in non-exercising or exercising young and
older subjects [26, 36, 63, 72]. Interestingly, mTORC1
leads to the stimulation of skeletal muscle synthesis,
preferentially within 2 h after the ingestion of a meal
containing at least 20–30 g leucine-rich proteins [73–75].
In older adults, protein intakes at higher level (1.0–1.5 g/
kg/day) and/or equally distributed in the different meals
(20–30 g protein/meal) and with high content of BCAA or
leucine (2–4 g/meal) remain discussed with contrasted
results to stimulate muscle protein synthesis and main-
taining muscle mass and functions or attenuating sarco-
penia [36, 76–86].

The amount and composition of protein required to
maintain nitrogen balance and protein and AA homeostasis,
to restore and maintain function, and to limit loss of lean
tissue in older subjects and in patients with syndromes
characterised by protein disarrangement may differ sub-
stantially from that in healthy subjects. AA signalling
influences different signalling regulatory systems, including
mTORC1, GCN2 and numerous neuropeptides and hor-
mones (i.e., GLP-1, PYY, serotonin and insulin) involved in
the control of protein synthesis and other processes,
including mitochondrial activity, response to inflammation
or feeding involves, and the sensitivity to these metabolic
signals seems to decline with age. It is discussed to increase
the recommended protein intake to 1.0–1.5 g/kg/day in
some physio-pathological conditions and even to 2.0 g/kg/
day for older people with severe illnesses ([26, 87–90]. In
addition to protein intake, in older and unhealthy subjects a
different pattern of indispensable AA can be required to
support the synthesis of some specific protein or metabo-
lites, including for instance proline for collagen synthesis,
aromatic AAs for synthesis of acute phase proteins and
some dispensable AA can become conditionally indis-
pensable, such as cysteine for the synthesis of glutathione or
glutamine for rapidly dividing cells [26, 91, 92].
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